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1 Introduction

The strong force comes with the problem of being precisely strong. Although the coupling

constant of QCD is small enough for perturbation theory to make sense at all, it is large

enough to cry out for higher order corrections for many processes, and in some regions of

phase space, large enough to invalidate a fixed order calculation.

This is the case in the collinear region, where a large logarithm compensates for the

moderate smallness of αs, and similarly in the soft region where there is a large effective

phase space ∼ log(hard scale/soft resolution scale) in transverse momentum. In these re-

gions resummation methods are needed. In the collinear DGLAP region [1–4], where the

emission can be seen as coming from one parton, the color structure is trivial and Sudakov

form factors can be used to describe no-emission probabilities.
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Unfortunately, the strong force is not only strong, it is also complicated, in the sense of

being non-Abelian. In the soft region, where emissions have contributions from branchings

of different partons this complicates matters. The real emission coming from the inter-

ference term of emission off parton i and emission off parton j, is canceled by the virtual

gluon exchange between parton i and j. (Using Feynman gauge self-energy type diagrams

can be neglected, i.e. i 6= j.)

Under the assumption that emissions strongly ordered in transverse momentum domi-

nate, all leading logarithms in (hard scale/soft scale) from virtual corrections exponentiate

and can be resummed. However, since these gluon exchanges affect the color structure, the

exponentiation must be done at the amplitude level. Thus a no-emission amplitude

M = exp






− 2

π

Q
∫

Q0

αs(k
′
⊥)

dk′
⊥

k′
⊥

Γ






M0, (1.1)

can be derived. In the above, M0 is the undressed hard scattering amplitude as a vector

in color space and Γ is a matrix in color space, describing the effect of exchanging gluons

between the various partons,

Γ =
∑

i<j

ΩijC
ij. (1.2)

Here Cij describes the color algebra part and Ωij contain the azimuth and rapidity mo-

mentum integral over the exchanged gluon k′,

Ωij = −1

2
(−1)l

[

∫

Ω

dy′dφ′

2π

k′2
⊥pi · pj

2pi · k′k′ · pj

− 1

2
(1 − sij)iπ

]

(1.3)

with sij = −1 if the partons ij are both incoming or both outgoing, and 1 otherwise, and l

counts how many of the involved partons which are quarks in the initial state, anti-quarks

in the final state or gluons, assuming the convention in (3.1) for the triple gluon vertex. In

the above equation the iπ-terms, coming from Coulomb gluon exchange, would give rise to

an unobservable phase in an Abelian theory. For a non-Abelian theory they do, however,

enter in a physically relevant way.

In general the color basis used need neither be orthogonal or normalized. In fact, it

will be seen below that the calculations simplify significantly in a special basis which is

not. For a non-orthonormal basis, the matrix of scalar products S, calculated by summing

over quark, anti-quark and gluon indices a, b, c, . . .

Smn =< Cm, Cn >=
∑

a,b,c...

Cm
abc...(C

n)∗abc..., (1.4)

is needed. (Note that Cm above is a basis tensor in color space, whereas Cij in (1.2) are

matrices in this basis, describing the effect of gluon exchange between parton i and j.) The

physical no-emission probability is given by σ = M†SM. As an aside it is pointed out that

scalar products between tensors corresponding to linear combinations of color structures

of Feynman diagrams with real coefficients are real.

– 2 –
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In the simple case of q1q2 → q3q4 the vector space containing the color structure has

only two dimensions, and the basis vectors are often taken to be the “t-channel singlet

octet basis”,

C1
q1q2q3q4

= δq1q4
δq2q3

C2
q1q2q3q4

= tgq4q1
tgq3q2

=
1

2

[

δq1q3
δq2q4

− 1

Nc

δq1q4
δq2q3

]

. (1.5)

In this case the issue of keeping track of the color structure amounts to a moderate com-

plication. However, already for gg → gg a six dimensional vector space is needed (reducing

to a five dimensional space for Nc = 3) and for gg → ggg there are 22 different color states

to keep track of (reducing to 16 for Nc = 3) [5, 6]. In the later case, to keep track of the

change in color structure as a result of virtual gluon exchange between a pair of partons,

one naively - without using further symmetries, thus needs to calculate the effect of gluon

exchange on 22 different color states, and then decompose the result into the 22 different

color tensors by taking scalar products, implying in total 222 scalar product. (This number

may be reduced, for example by using the fact that the soft anomalous dimension matrices

are symmetric if stated in orthonormal bases [7, 8].) The color structure thus gives rise

to a major computational complication, and so far the soft anomalous dimension matrices

have only been calculated for the 2 → 2 processes [5, 9–14] and the 2 → 3 processes [6, 15].

(For observable related and experimental work, see for example [16–24].)

If one is only interested in a fixed order expansion, for example as in [25], there is no

need to choose an explicit basis. Indeed the soft anomalous dimension matrix can be written

down in a compact basis-independent way for any number of partons, both at one-loop and

two-loop order [42]. Similarly, for the purpose of deriving general theoretical properties

it is often wiser to stay basis independent, and several interesting results have recently

been derived without explicit basis choices [8, 26–30]. However, to actually perform the

numerical exponentiation of (1.1), to obtain all-order results, an explicit basis is needed.

It is thus clearly desirable to find a simplifying general strategy. Especially, a unified

formalism is needed for the long term goal to incorporate non-leading color effects in event

generators. The major current event generators all work in the leading Nc limit [31–35].

This means that the color structure is decomposed into leading Nc contributions, using (2.2)

and (2.1) below. Color suppressed interference terms between different color structures are

neglected. It was argued a long time ago that for gluon amplitudes with fixed power of

αs these terms are suppressed by 1/N2
c [36]. However, there may in general be many

suppressed terms. As an example consider Ng − 2 gluons attached in a row to one gluon

line, giving in total Ng gluons. (For Ng up to five, all tree level graphs have this topology.)

The squared amplitude is given by

N
Ng−2
c (N2

c − 1). (1.6)

If the diagram is decomposed into different color topologies (which are orthogonal in the

Nc → ∞ limit) the sum of the parts squared separately is

1

N
Ng
c

[

(N2
c − 1)Ng + (−1)Ng (N2

c − 1)
]

. (1.7)

– 3 –



J
H
E
P
0
9
(
2
0
0
9
)
0
8
7

When Nc → ∞ both expressions grows as N
Ng
c and their ratio approaches one. However

for finite Nc the difference grows with Ng and already for Ng = 4, if Nc = 3, (1.7) is only

19/27 of (1.6), [37]. For 7 gluons (1.7) is less than 50% of (1.6).

The method suggested in this paper for dealing with the color structure of multi-

parton processes is developed with the resummation of soft gluons in mind, but clearly, as

it describes the effect of gluon exchange on any colored amplitude, it may also prove useful

for NLO (and higher order) corrections to amplitudes with (many) colored partons.

The results may also be used to calculate effects stemming from the non-global nature

of most observables, the ordinary “non-global logs” [38, 39], as well as the color suppressed

“super leading logarithms” carrying extra powers of log(hard scale/soft scale), suggested to

enter at order α4
s in perturbation theory [25, 40, 41]. Indeed, as the non-global logarithms

originate from real radiation outside an experimental exclusion region, to calculate the

contribution from n emissions outside the exclusion region requires the soft anomalous

dimension matrices for processes containing n additional partons.

As the two-loop soft anomalous dimension matrices have been proven to be propor-

tional to the one-loop results (for processes with any number of colored and uncolored

massless external legs), the present method can trivially be used also for two-loop anoma-

lous dimension matrices [42]. Recently it has been suggested that similar results also hold

for the three-loop anomalous dimension matrices and that they may hold to any order, as

long as the partons remain massless [26–28]. For massive external legs this simple relation

breaks down [29, 30].

The layout of this paper is as follows: First the formalism for constructing a basis is

described in section 2, and computational rules for gluon exchange in this basis are derived

in section 3. To illustrate the advantages with the constructed bases, the soft anomalous

dimension matrices for gg → gg, qq → qqg and qq → ggg are recalculated in section 4.

Finally some concluding remarks are made in section 5.

2 General basis formalism

2.1 Construction of a general basis

Previous strategies for dealing with the color structure needed for resummation of soft

gluons have lately been based on multiplet decomposition for finding a basis [6, 14]. In

this way symmetry properties are exploited to construct complete orthogonal bases (which

easily can be normalized). Clearly, using an orthogonal basis has advantages. The result

is easy to interpret and the matrix of scalar products between basis vectors is diagonal.

A disadvantage of the multiplet strategy is, however, that increasingly complicated

projection operators need to be used, and no closed form for deriving these projection

operators exists (to the knowledge of the author).

Another complication is that the projection operators, which tend to be expressed in

terms of the symmetric and anti-symmetric structure constants fabc and dabc, need increas-

ingly complicated computational rules for contraction of indices, that is, computational

rules involving more and more f ’s and d’s. Alternatively, the structure constants can be

– 4 –
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reexpressed in terms of the generators of the fundamental representation tgq1q2
,

ifabc

dabc

}

= 2(Tr[tatbtc] ∓ Tr[tbtatc]) = 2(taq1q2
tbq2q3

tcq3q1
∓ tbq1q2

taq2q3
tcq3q1

). (2.1)

In this case any scalar product, of arbitrarely complicated color tensors, can be calculated

using the gluon index contraction relation

tgcat
g
db =

1

2

(

δadδbc −
1

Nc

δacδbd

)

. (2.2)

However, the expression for the color structure tensor will contain 2(# of f ’s and d’s) terms,

and the scalar product of the tensor with itself thus 22(# of f ’s and d’s) terms which each

has to be contracted separately.

An alternative strategy would be to construct a basis by starting from a sufficient

number of arbitrarily chosen color tensors, or by exploiting possible symmetries. This will

work well for a small vector space, cf. [15], but will tend to give very lengthy expressions

for the basis vectors if Gram-Schmidt orthogonalization is used for a large vector space.

On the other hand, if the basis vectors are not made orthogonal the decomposition of color

structures resulting after gluon exchange will in general be cumbersome. (This complication

is circumvented in the special non-orthogonal basis suggested below). In addition it has to

be proved that the basis actually spans the relevant space.

These issues make it worth exploring other strategies for constructing the basis in the

general case of any number of colored and uncolored partons. The basis clearly has to span

the relevant space. It may seem desirable to find an orthogonal (normalized) basis, but it

will be seen below that using a special non-orthogonal, non-normalized basis significantly

diminishes the computational effort, mainly since the state obtained after gluon exchange is

immediately, i.e. without taking scalar products, a linear combination of basis states. There

is thus no need for calculating Nbasis
2 scalar products for every possible gluon exchange.

The solution is to use a basis inspired by the Nc → ∞ limit. In the case of infinitely

many colors, two color lines in a Feynman diagram are never the same, and gluons may be

represented by two color lines going in opposite directions. In this case, all possible color

structures can be represented by all ways of connecting incoming and outgoing color lines.

The strategy suggested here is thus similar to methods used in [43–46]. Especially it is noted

that the bases suggested here for resummation are similar to the color structure treatment

suggested in [46] to deal with real parton emission in event generators. For Nc = ∞
the scalar product between different color topologies, divided by the scalar product of a

topology with itself, equals zero. However, for finite Nc there are scalar product terms

which are suppressed only by 1/Nc.

Another important property of the bases constructed in the aforementioned way is that

they are completely democratic w.r.t. different quarks, different anti-quarks and different

gluons. This implies, for example, that once the effect of gluon exchange between the

gluons g1 and g2 has been calculated, the effect of gluon exchange between any other

gluons can be obtained by relabeling of indices i.e. renumbering of basis tensors. One

– 5 –
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therefore never needs to calculate more than six different exchanges gg, qq, q q, gq, gq and

qq. In addition, it will be seen below that the color structure after a gluon exchange on

a given color topology is a linear combination of at most four different basis tensors. The

soft anomalous dimension matrices will thus be relatively sparse in the suggested bases,

which should simplify numerical exponentiation.

It is also worth stressing that the suggested bases are well suited for comparison to

the Nc → ∞ limit, as the bases are easy to interpret and the soft anomalous dimension

matrices will turn out to be diagonal in this limit. This implies that they are ideal for

comparison to the radiation pattern obtained from event generators tending to work in the

Nc → ∞ limit [31–35].

The reduction in calculational effort for the soft anomalous dimension matrix with the

suggested basis is thus threefold. There is no need to calculate scalar products, reducing the

computational effort with a factor ∼ N2
basis from the number of scalar products and a factor

2(# of f ’s and d’s) from the number of terms in each of the scalar products, assuming (2.1)

is used. Furthermore there are at most six, as compared to Np(Np − 1)/2 for Np external

particles, different gluon exchanges to keep track of, the others are related by relabeling

of indices.

Unfortunately this does not quite remove the bad scaling of the problem with the

number of partons, as instead of having to calculate ∼ N2
basis scalar products for each

contribution to the soft anomalous dimension matrix, one has to calculate ∼ N2
basis scalar

products between the basis vectors, as they are only orthogonal in the Nc → infinity limit.

However, this only has to be done once. In addition calculating scalar products using (2.1)

and (2.2) gives just one, as opposed to 2(# of f ’s and d’s), different terms.

What remains is thus a scaling of type N2
basis. Very roughly speaking Nbasis tends

to grow as Np!, cf. section 2.2, 2.4. But, bearing in mind that only the topology of

the color contraction, and not the labeling of indices is important for the scalar product,

should naively reduce the (Np!)2 scaling by a factor ∼ Ng!Nq!Nq! from the number of

ways of labeling the indices. What remains is then a factorial growth for processes with

only gluons.

Note however, that for processes with many enough external partons, the major com-

putational effort will not lie in finding an expression for the soft anomalous dimension

matrix, but in numerical exponentiation of the obtained result. As numerical matrix ex-

ponentiation scales with the cube of the matrix size, and the number of basis vectors tends

to grow factorially with the number of partons, calculations with more than ten particles

seem unlikely. For practical implementations, it is also worth pointing out that the num-

ber of basis vectors highly depend on the kinds of partons involved. For processes with

no external gluons and Nq = Nq = Np/2 partons, the number of basis vectors is (Np/2)!

whereas for processes with only external gluons the size of the basis tens to grow rather as

Np!/e, cf. section 2.2 and 2.4.

That a basis constructed in the above described way is complete for Nc = ∞ is clear

from the fact that it represents all possible color topologies. For finite Nc, some of the

color tensors may be linearly dependent, and the basis over-complete, but it will still span

– 6 –
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the space. One way of thinking of the reduction in dimension of the color space is to note

that tensors corresponding to multiplets which are anti-symmetric in more than Nc quark

indices are not possible. Requiring that a color decomposition should be valid for all Nc

defines a unique decomposition of a Nc = 3 tensor.

Another way of convincing oneself that the above bases are complete, is to note that

every internal gluon line in any Feynman diagram can be removed by first using (2.1) to

remove the triple gluon vertices and then (2.2) to remove gluon propagators. In this way

any Feynman diagram, tree level or not, can be decomposed into color structures containing

no gluon propagators. What remains is a linear combination of color structures containing

internal quark lines, external quarks, external anti-quarks and external gluons. That is, a

linear combination of terms of precisely the form obtained by first splitting all gluons to

qq-paris, and then connecting quark and anti-quark lines in all possible ways.

Below, the construction of basis tensors will be investigated in more detail, first in the

special case of external quarks only, then for external gluons only, and finally in the general

case of both.

Before moving on we note that from the color algebra point of view there is no difference

between an outgoing quark and an incoming anti-quark, from here on simply collectively

referred to as quark, or an incoming quark and outgoing anti-quark, from now on referred

to as anti-quark. Opposite conventions may be used elsewhere. In addition the placing of

quark and anti-quark indices on the fundamental generators may be varied.

2.2 The quarks only case

Finding a basis in the case of only external quarks is trivial. The basis just consists of all

possible ways of connecting quarks and anti-quarks. For Nq = Nq quarks (clearly, for each

incoming quark line there is also an outgoing) this can be done in

Nbasis = Nq! (2.3)

ways. The squared norm of these basis vectors, calculated using (1.4), is equal to N
Nq
c .

To denote the tensors the notation

(q1q3)(q2q4) = δq1q3
δq2q4

(2.4)

is used. A complete basis for q1q2 → q3q4 is thus the tensors (q1q3)(q2q4) and (q1q4)(q2q3).

In fact this is the basis used in [10].

2.3 The gluons only case

To construct the basis in the case of gluons only, closed quark loops with external gluons

attached are used. For example, for four gluons, all gluons may be connected to the same

quark line giving (4 − 1)! = 6 topologically different diagrams. Alternatively the gluons

may be connected two and two in three different ways. Indeed the color space also has

nine dimensions, however, only half of the linear combinations of the six fully connected

topologies are physical, due to the fact that quarks and anti-quarks enter QCD on equal

footing. Therefore, if, in a quark loop, a quark is going around in one direction, the

– 7 –
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topology with the quark going around in the opposite direction (i.e. the gluon index order

is reversed) must also contribute.

More explicitly, introducing the notation

(g1g2 . . . gNg) = Tr[tg1tg2 . . . tgNg ] = tg1

q1q2
tg2

q2q3
. . . t

gNg
qNg q1

, (2.5)

to denote Ng gluons attached clockwise in the order g1 . . . gNg on a quark line, we note that

the physical linear combinations must be

(g1g2 . . . gNg ) + (−1)Ng (gNg . . . g2g1). (2.6)

To understand the sign, decompose any tree level Feynman diagram with only gluons

using (2.1) and (2.2). The result is a sum of color structures where the Ng gluons are

attached in different orders to the quark-line. For a specific order, the anti-cyclic order

is obtained by reversing the direction of the quark-line in every vertex, i.e. taking the

other term in (2.1) everywhere. This gives a factor (−1)Ng−2 as there are Ng − 2 vertices,

explaining the sign in (2.6).

Thus, in the case of gg → gg, only six color tensors are needed (for general Nc). This

explains the observation that some tensors decouple for gg → gg and gg → ggg [5, 6, 12].

The problem of constructing the Ng-gluon basis in the general case thus boils down to:

1) Find all the ways of grouping the Ng gluons such that each group contains at least

two gluons. (Groups with only one gluon would correspond to the color structure

tgqq = 0.) For four external gluons the possible groupings are thus {4} and {2, 2}.

2) For each fully connected grouping, such as {4}, find all physical different ways of

arranging the gluons. For Ng gluons this gives (Ng − 1)!/2 different color tensors

where the factor 1/2 is present since only one combination of the cyclic and anti-

cyclic ring is physical.

3) For disconnected groupings, such as {2, 2},

3a) Find separately, for each subgroup, all physically different ways of arranging the

gluons.

3b) Distribute the gluon indices {g1 . . . .gNg} in all possible ways among the different

subgroups.

3c) Combine the different sub-groupings in all possible ways, taking into account

that, if all gluon indices are equal, two groupings do actually correspond to

the same physical state. For example the subgrouping {{g1, g2}, {g3, g4}} and

{{g3, g4}, {g1, g2}} are equal.

Following this recipe a complete basis describing the color structure for any number of

external gluons can be constructed.

Neglecting the issue of physical linear combinations, the possible color tensors coincide

with the color tensors obtained by replacing each gluon with one quark and one anti-quark

– 8 –
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line, with the important exception that contractions between a qq pair corresponding to

the same gluon are disallowed. The problem of finding all such topologies is equivalent to

the number of ways of mapping N elements to each other without mapping a single one to

itself, which has a known solution

N !

N
∑

i=0

(−1)i

i!
→ N !

e
. (2.7)

The convergence to N !/e is very quick, rounding off to the closest integer works already

for N = 1.

Note however, that this just gives the total number of linearly independent color ten-

sors (for Nc = ∞). As mentioned above, only tensor combinations where quarks and

anti-quarks enter on equal footing are physical. For every quark ring participating in

building up a color tensor, the corresponding anti-quark ring has to be added. This re-

duces the number of physical tensors of a certain topology, such as {3, 2} with a factor

(1/2)# rings building up the tensor, that is (1/2)2 for {3, 2}.
As the number of fully connected color topologies, where all Ng gluons are attached

to the same quark-line equals (Ng − 1)!, the fraction of color tensors corresponding to fully

connected diagrams is roughly e/Ng, again ignoring the issue of physical tensor combina-

tions. Tree level QCD Feynman diagrams with only external gluons (more generally, no

gluon propagator between quarks) always correspond to linear combinations of fully con-

nected diagrams, (i.e. diagrams where all gluons are connected to the same quark-line) and

are the only diagrams presently included in major event generators. When considering only

physical topologies the ratio of fully connected to disconnected graphs changes slightly to

the advantage of the fully connected graph, as the factor (1/2)# rings building up the tensor

hits the disconnected topologies harder.

The norm of the color tensor with all gluons attached to a quark going around in one

direction is given by

(

1

2Nc

)Ng
[

(N2
c − 1)Ng + (−1)Ng (N2

c − 1)
]

. (2.8)

The physical tensors, being sums of gluons attached to rings with quarks going around in

opposite directions, contain mixed terms as well, these are however relatively suppressed,

and for large Ng or large Nc (2.8) is a good approximation. Note that the norm grows as

N
Ng
c , which is to be expected considering the Nc = ∞ limit. It turns out, however, that it

is easier to stick to the non-normalized versions of the color tensors.

2.4 The case of both quarks and gluons

In the general case of both external quarks and gluons the basis may be constructed by:

1) Connect the quark lines to each other in all possible ways, giving Nq! possibilities.

2) For i = 1, 2, . . . Ng−2, Ng attach i of the Ng gluons to the quarks in all possible ways.

– 9 –
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3) Connect the remaining Ng − i gluons as in the gluons only case, but keep cyclic and

anti-cyclic tensors separately.

4) Distribute the quark and gluon indices in all possible ways among the different group-

ings.

The number of color tensors in this case grows slower than (Ng + Nq)! but faster than

(Ng + Nq)!/e, again giving a factorial growth.

3 Calculating the effect of gluon exchange

Below, the computational rules for gluon exchange will be derived, and it will be seen that

exchanging a gluon trivially gives an explicit linear combination of the basis tensors. There

is thus no need to calculate scalar products of the resulting color structure after exchange,

with the basis tensors. As calculating scalar products was the most cumbersome part in

previous calculations, this represents a major improvement.

3.1 Computational rules

In this section the computational rules for gluon exchange between the basis tensors con-

structed in section 2 are derived.

Note that the quarks in closed quark loops are just products of the way of writing

down the basis and not physical particles, a gluon is thus never exchanged between the

quarks in closed quark loops.

We also have to decide on a convention for the triple gluon vertex. The conven-

tion used is

feig with

e = the external (incoming or outgoing) eikonal gluon index

i = the internal (incoming or outgoing) eikonal gluon index (3.1)

g = the soft exchange gluon index.

This convention has the advantage that the sign is independent of how the diagram is

drawn on a paper and whether a parton is incoming or outgoing.

3.1.1 Gluon exchange between two quarks or anti-quarks

In the simplest case a gluon is exchanged between two external quarks q1 and q2, which

in general have n and m gluons attached respectively. Using (2.2), the effect of gluon

exchange between the quarks q1 and q2 in two different open quark lines may be written
(

q1g11 . . . g1nq1 ⊗
q2g21 . . . g2mq2

)

→ 1

2

(

q1g11 . . . g1nq2 ⊗
q2g21 . . . g2mq1

)

− 1

2Nc

(

q1g11 . . . g1nq1 ⊗
q2g21 . . . g2mq2

)

. (3.2)

where the notation
(

q1g11 . . . g1nq1 ⊗
q2g21 . . . g2mq2

)

= tg11

d11q1

tg12

d12d11
. . . tg1n

q1d1n−1
tg21

d21q2

tg22

d22d21
. . . tg2m

q2d2m−1
(3.3)

is used.

If the gluon is instead exchanged between the external anti-quarks, the indices on the

quarks are kept whereas the indices on the anti-quarks are exchanged.
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3.1.2 Gluon exchange between quark and anti-quark

Exchanging a gluon between a quark q1 and an anti-quark q2 results in

(

q1g11 . . . g1nq1 ⊗
q2g21 . . . g2mq2

)

→ 1

2

(

q1g11 . . . g1ng21 . . . g2mq2 ⊗
q2q1

)

− 1

2Nc

(

q1g11 . . . g1nq1 ⊗
q2g21 . . . g2mq2

)

.

(3.4)

The case where the involved quark and anti-quark are part of the same quark line can be

obtained by identifying q1 and q2 above.

3.1.3 Gluon exchange between quark and gluon

To derive the effect of gluon exchange between a quark and a gluon we use the relation (2.1)

to rewrite the triple gluon vertex. After this (2.2) is applied (and it is noted that the 1/Nc

suppressed terms drop out). For gluon exchange between the quark q1 and the gluon g2i

the result is:

(

q1g11 . . . g1nq1 ⊗
q2g21 . . . g2i . . . g2mq2

)

→ −1

2

(

q1g11 . . . g1ng2i+1 . . . g2mq2 ⊗
q2g21 . . . g2iq1

)

+
1

2

(

q1g11 . . . g1ng2i . . . g2nq2 ⊗
q2g21g2i−1q1

)

. (3.5)

If, in the left hand side above, g2i is in a closed quark loop this is accounted for by identifying

q2 and q2, and if the gluon g2i is attached to the same quark-line as q1 this is taken care of

by identifying q1 and q2.

3.1.4 Gluon exchange between anti-quark and gluon

Employing the same calculational method as for qg results in

(

q1g11 . . . g1nq1 ⊗
q2g21 . . . g2i . . . g2mq2

)

→ 1

2

(

q1g2i . . . g2mq2 ⊗
q2g21 . . . g2i−1g11 . . . g2nq1

)

−1

2

(

q1g2i+1 . . . g2mq2 ⊗
q2g21 . . . g2ig11 . . . g1nq1

)

(3.6)

where again, if g2i initially is in a closed quark loop this is accounted for by identifying q2

and q2, and if the gluon g2i was originally placed on the same quark line as q1 this is taken

care of by identifying q2 and q1.

3.1.5 Gluon exchange between two external gluons

To derive the effect on the basis vectors of exchanging a gluon between two external gluons,

two triple gluon vertices have to be replaced using (2.1) and three gluon propagators have

to be contracted using (2.2). Again the non-leading Nc terms drop out and the result of
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exchanging a gluon between g1i and g2j is

(

q1g11 . . . g1i . . . g1nq1 ⊗
q2g21 . . . g2j . . . g2mq2

)

→ (3.7)

−1

2

(

q1g11 . . . g1i−1g2j+1 . . . g2mq2 ⊗
q2g21 . . . g2j−1g2jg1ig1i+1 . . . ginq1

)

+
1

2

(

q1g11 . . . g1i−1g1ig2j+1 . . . g2mq2 ⊗
q2g21 . . . g2j−1g2jg1i+1 . . . g1nq1

)

+
1

2

(

q1g11 . . . g1i−1g2jg2j+1 . . . g2mq2 ⊗
q2g21 . . . g2j−1g1ig1i+1 . . . g1nq1

)

− 1

2

(

q1g11 . . . g1i−1g1ig2jg2j+1 . . . g2mq2 ⊗
q2g21 . . . g2j−1g1i+1 . . . g1nq1

)

.

If one (or both) quark lines is (are) closed, then the corresponding quarks are to be iden-

tified. If both gluons are part of the same quark line, then identify q1q2, and q2q1 if the

quark line is closed.

4 Some explicit examples

4.1 gg → gg

As an explicit example of how the above strategy simplifies the problem of keeping track

of the color structure, the process of g1g2 → g3g4 will be considered in detail here. The

soft anomalous dimension matrix for this case was first calculated in [12] and later, more

elegantly in [14].

4.1.1 Construction of the basis

To construct the basis the recipe outlined in section 2.3 is followed, starting with finding

all the ways of grouping the gluons:

1) The four gluons can be grouped two and two {2, 2} or all four together {4}.

2) When all four gluons are attached to the same quark line, {4}, the indices can be

placed in (4− 1)! = 6 different ways. However, due to the symmetry between quarks

and anti-quarks, clockwise and anti-clockwise gluon rings only enter in one linear

combination, giving three physical tensors:

C1
g1g2g3g4

= (g1g2g3g4) + (g4g3g2g1) = Tr[tg1tg2tg3tg4] + Tr[tg4tg3tg2tg1]

C2
g1g2g3g4

= (g1g2g4g3) + (g3g4g2g1) = Tr[tg1tg2tg4tg3] + Tr[tg3tg4tg2tg1]

C3
g1g2g3g4

= (g1g3g2g4) + (g4g2g3g1) = Tr[tg1tg3tg2tg4] + Tr[tg4tg2tg3tg1]. (4.1)

3a) For the grouping {2, 2}, the index order in the subgrouping doesn’t matter (since

Tr[tg1t
g
2] = Tr[tg2t

g
1]). Each subgrouping thus only gives rise to one physical tensor.
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3b,c) The gluon indices g1, g2, g3, g4 may be split into the subgroupings as {{g1, g2}, {g3, g4}},
{{g1, g3}, {g2, g4}} and {{g1, g4}, {g2, g3}}, giving three basis tensors

C4
g1g2g3g4

= (g1g2)(g3g4) = Tr[tg1tg2]Tr[tg3tg4 ] =

(

1

2

)2

δg1g2
δg3g4

C5
g1g2g3g4

= (g1g3)(g2g4) = Tr[tg1tg3]Tr[tg2tg4 ] =

(

1

2

)2

δg1g3
δg2g4

C6
g1g2g3g4

= (g1g4)(g2g3) = Tr[tg1tg4]Tr[tg2tg3 ] =

(

1

2

)2

δg1g4
δg2g3

. (4.2)

4.1.2 Calculation of soft anomalous dimension matrix

As previously noted, once the effect of gluon exchange between g1 and g2 is calculated the

effect of gluon exchange between any other gluons may be deduced. There may thus at

most be Nbasis different situations to keep track of. However, this number will in general be

further reduced due to the irrelevance of non-participating indices. For example the effect

of gluon exchange between g1 and g2 on C1
g1g2g3g4

is the same as the effect on C2
g1g2g3g4

.

Thus, the physically different situations are:

1) A gluon is exchanged between two neighboring gluons on a quark ring with four

gluons attached (for example gluon 1 and 2 on C1).

Applying (3.7) to the first half of C1
g1g2g3g4

with the identification g1 → g12 = g1i,

g2 → g21 = g2j , g3 → g22, g4 → g11 and q1 = q2, q2 = q1 gives

(g1g2g3g4) → −1

2
(g1g2)(g3g4) −

Nc

2
(g1g2g3g4). (4.3)

Similarly application to the second half results in

(g1g4g3g2) → −1

2
(g1g2)(g3g4) −

Nc

2
(g1g4g3g2), (4.4)

and it may be concluded that

C1
g1g2g3g4

→ −2

2
C4

g1g2g3g4
− Nc

2
C1

g1g2g3g4
. (4.5)

2) A gluon can be exchanged between two next to neighboring gluons. In this case we

get for an exchange between g1 and g2 on C3
g1g2g3g4

C3
g1g2g3g4

→ C5
g1g2g3g4

+ C6
g1g2g3g4

. (4.6)

3) A gluon may be exchanged between the gluons attached to a two gluon ring, such

as g1 and g2 on C4
g1g2g3g4

. This just gives a factor Nc multiplying the old tensor, for

example for gluon exchange between g1 and g2 on C4
g1g2g3g4

C4
g1g2g3g4

→ NcC
4
g1g2g3g4

. (4.7)
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4) A gluon may be exchange between two gluons attached to different two gluon rings

such as g1 and g2 in C6
g1g2g3g4

, giving

C6
g1g2g3g4

→ −1

2
C1

g1g2g3g4
+

1

2
C3

g1g2g3g4
. (4.8)

The above information may be combined into a matrix describing the color algebra

part for gluon exchange between g1 and g2

C12
gg→gg =



















−Nc

2 0 0 0 0 −1
2

0 −Nc

2 0 0 −1
2 0

0 0 0 0 1
2

1
2

−1 −1 0 Nc 0 0

0 0 1 0 0 0

0 0 1 0 0 0



















.

As the gluons g3 and g4 have the same relationship to each other in the basis as

g1 and g2, the color structure of the soft anomalous dimension matrix will be the same

C34
gg→gg = C12

gg→gg. Similarly C14
gg→gg = C23

gg→gg and C24
gg→gg = C13

gg→gg.

The contributions C14
gg→gg and C24

gg→gg may be calculated by using the results in

eqs. (4.5), (4.8) and relabeling indices. Letting T = Ω12 + Ω34, U = Ω13 + Ω24 and

V = Ω14 + Ω23 be the phase space integrals the result can be written

Γgg→gg =



















−1
2Nc(T + V ) 0 0 U−V

2 0 U−T
2

0 −1
2Nc(T + U) 0 V −U

2
V −T

2 0

0 0 −1
2Nc(U + V ) 0 T−V

2
T−U

2

U − T V − T 0 −NcT 0 0

0 V − U T − U 0 −NcU 0

U − V 0 T − V 0 0 −NcV



















. (4.9)

To obtain physical results the scalar product matrix

Sgg→gg = (4.10)






























N6
c −3N4

c +8N2
c −6

8N2
c

−N4
c +4N2

c −3
4N2

c

−N4
c +4N2

c −3
4N2

c

(N2
c −1)

2

8Nc

1−N2
c

8Nc

(N2
c −1)

2

8Nc

−N4
c +4N2

c −3
4N2

c

N6
c −3N4

c +8N2
c −6

8N2
c

−N4
c +4N2

c −3
4N2

c

(N2
c −1)

2

8Nc

(N2
c −1)

2

8Nc

1−N2
c

8Nc

−N4
c +4N2

c −3
4N2

c

−N4
c +4N2

c −3
4N2

c

N6
c −3N4

c +8N2
c −6

8N2
c

1−N2
c

8Nc

(N2
c −1)

2

8Nc

(N2
c −1)

2

8Nc

(N2
c −1)

2

8Nc

(N2
c −1)

2

8Nc

1−N2
c

8Nc

(N2
c −1)

2

16
(N2

c −1)
16

(N2
c −1)
16

1−N2
c

8Nc

(N2
c −1)

2

8Nc

(N2
c −1)

2

8Nc

(N2
c −1)
16

(N2
c −1)

2

16
(N2

c −1)
16

(N2
c −1)

2

8Nc

1−N2
c

8Nc

(N2
c −1)

2

8Nc

(N2
c −1)
16

(N2
c −1)
16

(N2
c −1)

2

16































,

calculated using (1.4), is also needed. This matrix contains Nbasis
2 entries, however, closer

consideration reveals that only six of them correspond to different contractions.

It is worth remarking on the leading Nc behavior of (4.9). The computational rules in

eqs. (3.2), (3.7) contain no positive power of Nc. Thus the Nc in (4.9) must come from closed
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quark loops. The only way to get a closed quark loop is to exchange a gluon between two

neighboring partons attached to the same quark-line, i.e. only ”color neighbors” radiate in

the Nc → ∞ limit. The result after exchange contains a factor Nc multiplying the old color

structure. Leading Nc contributions will therefore always be diagonal in the present basis.

This is in close resemblance with the Dipole Cascade Model and the original Ariadne

program in which only neighboring pairs of partons, dipoles, radiate [47–50]. In particular

for gluon radiation from e+e− → qq the leading Nc piece should come from neighboring

partons. It is cautioned, however, that there are many more non-leading Nc contributions,

than leading pieces, as there (in general) are many more non-neighboring partons.

It is also worth remarking that although there are scalar products between differ-

ent basis tensors that are suppressed by only one power of Nc, these scalar products

are never between different fully connected topologies, i.e. never between tree level QCD

gluon amplitudes.

4.2 qq → qqg

As an example of a process containing both quarks and gluons we consider the color struc-

ture needed for gluon resummation for q1q2 → q3q4g5. This color structure is important

for (among other things) QCD corrections to the production of W ’s decaying leptonically

and being accompanied by three jets [51].

The result of constructing color tensors as outlined in section 2.4 is

C1
q1q2q3q4g5

= (q4g5q3)(q1q2) = tg5

q3q4
δq1q2

C2
q1q2q3q4g5

= (q4q3)(q1g5q2) = δq3q4
tg5

q2q1

C3
q1q2q3q4g5

= (q4g5q2)(q1q3) = tg5

q2q4
δq3q1

C4
q1q2q3q4g5

= (q2q4)(q1g5q3) = δq2q4
tg5

q3q1
. (4.11)

Exchanging gluons between the partons in all possible ways results in a leading color
diagonal part, a 1/Nc suppressed off-diagonal part and a 1/N2

c suppressed diagonal part:

Γqq→qqg =

Nc

2
Diagonal[Ω12 + Ω35 − Ω45, −Ω15 + Ω25 + Ω34, Ω13 + Ω25 − Ω45, −Ω15 + Ω24 + Ω35]

+
1

2









0 0 Ω12+Ω15+Ω23+Ω35 Ω12+Ω14−Ω25−Ω45

0 0 Ω14−Ω15+Ω34−Ω35 Ω23+Ω25+Ω34+Ω45

Ω13+Ω15+Ω23+Ω25 Ω13+Ω14−Ω35−Ω45 0 0

Ω14−Ω15+Ω24−Ω25 Ω23+Ω24+Ω35+Ω45 0 0









− 1

2Nc

(Ω12 + Ω13 + Ω14 + Ω23 + Ω24 + Ω34) Diagonal[1, 1, 1, 1]. (4.12)

Again, as we are working in a non-orthogonal basis, all scalar products are needed

Sqq→qqg =











1
2Nc

(

N2
c − 1

)

0 1
2

(

N2
c − 1

)

1
2

(

N2
c − 1

)

0 1
2Nc

(

N2
c − 1

)

1
2

(

N2
c − 1

)

1
2

(

N2
c − 1

)

1
2

(

N2
c − 1

)

1
2

(

N2
c − 1

)

1
2Nc

(

N2
c − 1

)

0
1
2

(

N2
c − 1

)

1
2

(

N2
c − 1

)

0 1
2Nc

(

N2
c − 1

)











. (4.13)
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4.3 qq → ggg

The other color structure relevant for W plus three jets is that of qq → ggg. In this case

an 11-dimensional matrix is needed to describe the color space (reducing to 10 for Nc = 3).

These results have been calculated and are electronically attached to this submission. Again

there is a diagonal leading Nc part, an off-diagonal part with relative suppression 1/Nc and

a 1/N2
c suppressed diagonal contribution.

5 Conclusions

In the present paper a general recipe for constructing bases capable of dealing with the color

structure needed for resummation for any number of colored partons has been presented.

This in itself is a step forward. In addition the suggested bases are argued to have relatively

nice computational properties. The bases are obtained from the Nc = ∞ case by splitting

gluons in qq pairs and connecting color lines in all possible ways. The bases thus constructed

will therefore neither be normalized or orthogonal for Nc = 3, but they will span the

space and have the property that gluon exchanges between any pair of external partons

directly, i.e. without taking scalar products, result in linear combinations of basis vectors.

Furthermore, as can be seen from the computational rules in eqs. (3.2), (3.7), the result

after gluon exchange contains at most four (often two or one) basis vectors, giving relatively

sparse soft anomalous dimension matrices.

The fact that there is no need to calculate scalar products to decompose the tensors

resulting after gluon exchange is a major advantage. Otherwise there would, for each of the

Np(Np − 1)/2 possible gluon exchanges, be ∼ N2
basis ∼ (Np!)2 (cf. section 2.2, 2.4) scalar

products to calculate. In addition, the computational time for calculating the effect of gluon

exchange is further reduced, as the constructed bases maximally exploit the symmetry w.r.t.

external parton indices. All indices corresponding to the same kind of parton enter the

basis on equal footing. Therefore, for example, once the effect of gluon exchange between

any pair of gluons has been calculated, the effect of gluon exchange between any other can

be obtained by relabeling of indices, corresponding to a renumbering of tensors. One thus

at most has to calculate six (gg, qq, qq, or qq to qg and qg) different contributions to Γ.

For a hard scattering amplitude with only gluons it is enough to calculate one.

From this it is clear that the major computational effort lies in computing the ∼ N2
basis

scalar products between all the basis vectors. So far, it thus looks as if the calculational

effort is reduced by a factor ∼ Np(Np − 1)/2 (times a factor coming from the fact that

the basis vectors are simpler to take scalar products of). However, also in the case of

calculating scalar products between basis tensors, the equal footing of the indices comes to

rescue. This is so, as only the topology of the contraction, and not the labeling of indices,

is important for determining the scalar product.

Apart from the nicer scaling properties, the suggested bases have the advantage of

being orthogonal and giving rise to diagonal soft anomalous dimension matrices in the

Nc → ∞ limit. This enables a more straight forward comparison to event generators,

tending to keep only the leading Nc contribution.
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